Zokyo Auditing Tutorials
  • 🔐Zokyo Auditing Tutorials
  • 📚Tutorials
    • 🏃Tutorial 1: Front-Running
      • 🚀Prerequisites
      • 📘Understanding Front-Running
      • 👓Examples
      • ⚒️Mitigation Steps
      • 🏦Resource Bank to more front running examples
      • 🤝Front-Running Conclusion
    • 🧱Tutorial 2: Unsafe Casting
      • 🚀Prerequisites
      • 📘Understanding Casting
      • 👓Examples
      • 🤝Unsafe Casting Conclusion
    • 👍Tutorial 3: Approvals and Safe Approvals
      • 🚀Prerequisites
      • 📘Understanding Approvals
      • 👓Vulnerability Examples
        • 🔁ERC20 Approval Reset Requirement
        • 😴Ignoring Return Values from ERC20 approve() Function: Potential Miscount of Successful Approvals
        • 🚫Improper use of Open Zeppelins safeApprove() for Non-zero Allowance Increments
        • 🥾Omitted Approval for Contract Interactions Within a Protocol
        • 🤦‍♂️Failing to Reset Token Approvals in Case of Failed Transactions or other actions
        • 💭Miscellaneous
        • ERC20 Approve Race Condition Vulnerability
      • ⚒️Spot the Vulnerability
      • 🤝Approvals and Safe Approvals Conclusion
    • ⛓️Tutorial 4: Block.chainid, DOMAIN_SEPARATOR and EIP-2612 permit
      • 🚀Prerequisites
      • 📘Understanding Block.chainid and DOMAIN_SEPARATOR
      • 👓Examples
      • ⚒️General Mitigation Steps
      • 🤝Tutorial 4 Conclusion
  • 💰Tutorial 5: Fee-On-Transfer Tokens
    • 🚀Prerequisites
    • 📘Understanding Fee-On-Transfer
    • 👓Examples
    • 📘Links to more fee-on-transfer vulnerability examples
    • 🤝Fee-On-Transfer Tokens: Conclusion
  • 🌴Tutorial 6: Merkle Trees
    • 🚀Prerequisites
    • 📘Understanding Merkle Trees
    • 🔎Verification within a Merkle Tree:
    • 📜Merkle Proofs Within Smart Contracts
    • 🖋️Merkle Proof Solidity Implementation
    • 🛑Vulnerabilities When Using Merkle Trees
    • 💀Example Vulnerabilities
    • 🧠Exercise
    • 🤝Merkle Trees Conclusion
  • 🌳Tutorial 7: Merkle-Patricia Trees
    • 🚀Prerequisites
    • 📘Understanding Merkle-Patricia Trees
    • 📕Understanding Merkle-Patrica Trees pt.2
    • 🔎Verification within a Merkle-Patricia Tree
    • 🛑Vulnerabilities When Using Merkle-Patricia Trees
    • 💀Example Vulnerability
    • 🤝Merkle-Patricia Trees: Conclusion
  • 🔁Tutorial 8: Reentrancy
    • 🚀Prerequisites
    • 📘Understanding Reentrancy
    • ⚒️Mitigation
    • 💀The DAO Hack: An In-depth Examination
    • 👓Examples
    • 🏦Resource Bank To More Reentrancy Examples
    • 🤝Conclusion: Reflecting on the Reentrancy Vulnerability
  • 🔂Tutorial 9: Read-Only Reentrancy
    • 🚀Prerequisites
    • 📘Understanding Read-Only Reentrancy
    • 🔨Mitigating Read-Only Reentrancy
    • 👓Real World Examples
    • 🏦Resource Bank To More Reentrancy Examples
    • 🤝Read-Only Reentrancy: Conclusion
  • 🚆Tutorial 10: ERC20 transfer() and safeTransfer()
    • 🚀Prerequisites
    • 📘Understanding ERC20 transfer() and safeTransfer()
    • 👓Examples
    • 🤝Conclusion
  • 📞Tutorial 11: Low level .call(), .transfer() and .send()
    • 🚀Prerequisites
    • 📘Understanding .call, .transfer, and .send
    • 🛑Understanding the Vulnerabilities of .transfer and .send
    • 👓Examples
    • 🤝Low level .call(), .transfer() and .send() conclusion
  • ☎️Tutorial 12: Delegatecall Vulnerabilities in Precompiled Contracts
    • 🚀Prerequisites
    • 📳Understanding Delegatecall
    • ⛰️EVM, L2s, Bridges, and the Quest for Scalability
    • 🏗️Understanding Precompiles in the Ethereum Virtual Machine (EVM)
    • 💻Custom Precompiles
    • 💀Potential Vulnerabilities in EVM Implementations: Overlooked DelegateCall in Precompiled Contracts
    • 👓Real World Examples
    • 🤝Delegatecall and Precompiles: Conclusion
  • 🌊Tutorial 13: Liquid Staking
    • 🚀Prerequisites
    • 📘Understanding Liquid Staking
    • 💀Understanding Liquid Staking Vulnerabilities
    • 🛑Example Vulnerability
    • 🐜Example Vulnerability 2
    • 🕷️Example Vulnerability 3
    • 🤝Liquid Staking: Conclusion
  • 🚿Tutorial 14: Slippage
    • 🚀Prerequisites
    • 📘Understanding Slippage in Automated Market Makers (AMMs)
    • 💀Understanding the "Lack of Slippage Check" Vulnerability in Automated Market Makers (AMMs) and DEXs
    • 😡On-Chain Slippage Calculations Vulnerability
    • 📛0 slippage tolerance vulnerability
    • 👓Real World Examples
    • 🏦Resource bank to more slippage vulnerabilities
    • 🤝Slippage Conclusion
  • 📉Tutorial 15: Oracles
    • 🚀Prerequisites
    • 📘Understanding Oracles
    • 📈Types of price feeds
    • 😡Flash Loans
    • 💀Understanding Oracle Vulnerabilities
      • ⛓️The Danger of Single Oracle Dependence
      • ⬇️Using Deprecated Functions
      • ❌Lack of return data validation
      • 🕐Inconsistent or Absent Price Data Fetching/Updating Intervals
    • 🔫Decentralized Exchange (DEX) Price Oracles Vulnerabilities
    • 🛑Found Vulnerabilities In Oracle Implementations
      • ⚖️Newly Registered Assets Skew Consultation Results
      • ⚡Flash-Loan Oracle Manipulations
      • ⛓️Relying Only On Chainlink: PriceOracle Does Not Filter Price Feed Outliers
      • ✍️Not Validating Return Data e.g Chainlink: (lastestRoundData)
      • 🗯️Chainlink: Using latestAnswer instead of latestRoundData
      • 😭Reliance On Fetching Oracle Functionality
      • 🎱Wrong Assumption of 18 decimals
      • 🧀Stale Prices
      • 0️⃣Oracle Price Returning 0
      • 🛶TWAP Oracles
      • 😖Wrong Token Order In Return Value
      • 🏗️miscellaneous
    • 🤝Oracles: Conclusion
  • 🧠Tutorial 16: Zero Knowledge (ZK)
    • 🚀Prerequisites
    • 📚Theory
      • 🔌Circom
      • 💻Computation
      • 🛤️Arithmetic Circuits
      • 🚧Rank-1 Constraint System (R1CS)
      • ➗Quadratic Arithmetic Program
      • ✏️Linear Interactive Proof
      • ✨ZK-Snarks
    • 🤓Definitions and Essentials
      • 🔑Key
      • 😎Scalar Field Order
      • 🌳Incremental Merkle Tree
      • ✒️ECDSA signature
      • 📨Non-Interactive Proofs
      • 🏝️Fiat-Shamir transformation (or Fiat-Shamir heuristic)
      • 🪶Pedersen commitment
    • 💀Common Vulnerabilities in ZK Code
      • ⛓️Under-constrained Circuits
      • ❗Nondeterministic Circuits
      • 🌊Arithmetic Over/Under Flows
      • 🍂Mismatching Bit Lengths
      • 🌪️Unused Public Inputs Optimized Out
      • 🥶Frozen Heart: Forging of Zero Knowledge Proofs
      • 🚰Trusted Setup Leak
      • ⛔Assigned but not Constrained
    • 🐛Bugs In The Wild
      • 🌳Dark Forest v0.3: Missing Bit Length Check
      • 🔢BigInt: Missing Bit Length Check
      • 🚓Circom-Pairing: Missing Output Check Constraint
      • 🏹Semaphore: Missing Smart Contract Range Check
      • 🔫Zk-Kit: Missing Smart Contract Range Check
      • 🤖Aztec 2.0: Missing Bit Length Check / Nondeterministic Nullifier
      • ⏸️Aztec Plonk Verifier: 0 Bug
      • 🪂0xPARC StealthDrop: Nondeterministic Nullifier
      • 😨a16z ZkDrops: Missing Nullifier Range Check
      • 🤫MACI 1.0: Under-constrained Circuit
      • ❄️Bulletproofs Paper: Frozen Heart
      • 🏔️PlonK: Frozen Heart
      • 💤Zcash: Trusted Setup Leak
      • 🚨14. MiMC Hash: Assigned but not Constrained
      • 🚔PSE & Scroll zkEVM: Missing Overflow Constraint
      • ➡️PSE & Scroll zkEVM: Missing Constraint
      • 🤨Dusk Network: Missing Blinding Factors
      • 🌃EY Nightfall: Missing Nullifier Range Check
      • 🎆Summa: Unconstrained Constants Assignemnt
      • 📌Polygon zkEVM: Missing Remainder Constraint
    • 💿ZK Security Resources
  • 🤝Tutorial 17 DEX's (Decentralized Exchanges)
    • 🚀Prerequisites
    • 📚Understanding Decentralized Exchanges
    • 💀Common Vulnerabilities in DEX Code
      • 🔎The "Lack of Slippage Check" Vulnerability in Automated Market Makers (AMMs) a
      • 😡On-Chain Slippage Calculations Vulnerability
      • 📛Slippage tolerance vulnerability
      • 😵How Pool Implementation Mismatches Pose a Security Risk to Decentralized Exchanges (DEXs)
      • 🏊‍♂️Vulnerabilities in Initial Pool Creation - Liquidity Manipulation Attacks
      • 🛑Vulnerabilities In Oracle Implementations
        • ⚖️Newly Registered Assets Skew Consultation Results
        • ⚡Flash-Loan Oracle Manipulations
        • ⛓️Relying Only On Chainlink: PriceOracle Does Not Filter Price Feed Outliers
        • ✍️Not Validating Return Data e.g Chainlink: (lastestRoundData)
        • 🗯️Chainlink: Using latestAnswer instead of latestRoundData
        • 😭Reliance On Fetching Oracle Functionality
        • 🎱Wrong Assumption of 18 decimals
        • 🧀Stale Prices
        • 0️⃣Oracle Price Returning 0
        • 🛶TWAP Oracles
        • 😖Wrong Token Order In Return Value
        • 🏗️miscellaneous
      • 🥶Minting and Burning Liquidity Pool Tokens
      • 🎫Missing Checks
      • 🔞18 Decimal Assumption
        • 📌Understanding ERC20 Decimals
        • 💀Examples Of Vulnerabilities To Do With Assuming 18 Decimals
      • 🛣️Incorrect Swap Path
      • The Importance of Deadline Checks in Swaps
    • 🤝Conclusion
  • 🤖Tutorial 18: Proxies
    • 🚀Prerequisites
    • 📥Ethereum Storage and Memory
    • 📲Ethereum Calls and Delegate Calls
    • 💪Upgradability Patterns in Ethereum: Enhancing Smart Contracts Over Time
    • 🔝Proxy Upgrade Pattern in Ethereum
    • 🌀Exploring the Landscape of Ethereum Proxies
      • 🪞Transparent Proxies
      • ⬆️UUPS Proxies
      • 💡Beacon Proxies
      • 💎Diamond Proxies
  • 🔞Tutorial 19: 18 Decimal Assumption
    • 🚀Prerequisites
    • 📌Understanding ERC20 Decimals
    • 💀Examples Of Vulnerabilities To Do With Assuming 18 Decimals
    • 🤝Conclusion
  • ➗Tutorial 20: Arithmetic
    • 🚀Prerequisites
    • 🕳️Arithmetic pitfall 1: Division by 0
    • 🔪Arithmetic pitfall 2: Precision Loss Due To Rounding
    • 🥸Arithmetic pitfall 3: Erroneous Calculations
    • 🤝Conclusion
  • 🔁Tutorial 21: Unbounded Loops
    • 🚀Prerequisites
    • ⛽Gas Limit Vulnerability
    • 📨Transaction Failures Within Loops
    • 🤝Conclusion
  • 📔Tutorial 22: `isContract`
    • 🚀Prerequisites
    • 💀Understanding the 'isContract()` vulnerability
    • 🤝Conclusion
  • 💵Tutorial 23: Staking
    • 🚀Prerequisites
    • 💀First Depositor Inflation Attack in Staking Contracts
    • 🌪️Front-Running Rebase Attack (Stepwise Jump in Rewards)
    • ♨️Rugability of a Poorly Implemented recoverERC20 Function in Staking Contracts
    • 😠General Considerations for ERC777 Reentrancy Vulnerabilities
    • 🥏Vulnerability: _lpToken and Reward Token Confusion in Staking Contracts
    • 🌊Slippage Checks
    • 🌽The Harvest Functionality in Vaults: Issues and Best Practices
  • ⛓️Tutorial 24: Chain Re-org Vulnerability
    • 🚀Prerequisites
    • ♻️Chain Reorganization (Re-org) Vulnerability
    • 🧑‍⚖️Chain Re-org Vulnerability in Governance Voting Mechanisms
  • 🌉Tutorial 25: Cross Chain Bridges Vulnerabilities
    • 🚀Prerequisites
    • ♻️ERC777 Bridge Vulnerability: Reentrancy Attack in Token Accounting
      • 🛑Vulnerability: Withdrawals Can Be Locked Forever If Recipient Is a Contract
    • 👛The Dangers of Not Using SafeERC20 for Token Transfers
    • Uninitialized Variable Vulnerability in Upgradeable Smart Contracts
    • Unsafe External Calls and Their Vulnerabilities
    • Signature Replay Attacks in Cross-Chain Protocols
  • 🚰Tutorial 26: Integer Underflow and Overflow Vulnerabilities in Solidity (Before 0.8.0)
    • 🚀Prerequisites
    • 💀Understanding Integer Underflow and Overflow Vulnerabilities
    • 🤝Conclusion
  • 🥏Tutorial 27: OpenZeppelin Vulnerabilities
    • 🚀Prerequisites
    • 🛣️A Guide on Vulnerability Awareness and Management
      • 🤝Conclusion
  • 🖊️Tutorial 28: Signature Vulnerabilities / Replays
    • 🚀Prerequisites
    • 🔏Reusing EIP-712 Signatures in Private Sales
    • 🔁Replay Attacks on Failed Transactions
    • 📃Improper Token Validation in Permit Signature
  • 🤝Tutorial 29: Solmate Vulnerabilities
    • 🔏Lack of Code Size Check in Token Transfer Functions in Solmate
  • 🧱Tutorial 30: Inconsistent block lengths across chains
    • 🕛Incorrect Assumptions about Block Number in Multi-Chain Deployments
  • 💉Tutorial 31: NFT JSON and XSS injection
    • 📜Vulnerability: JSON Injection in tokenURI Functions
    • 📍Cross-Site Scripting (XSS) Vulnerability via SVG Construction in Smart Contracts
  • 🍃Tutorial 32: Merkle Leafs
    • 🖥️Misuse of Merkle Leaf Nodes
  • 0️Tutorial 33: Layer 0
    • 📩Lack of Force Resume in LayerZero Integrations
    • ⛽LayerZero-Specific Vulnerabilities in Airdropped Gas and Failure Handling
    • 🔓Understanding the Vulnerability of Blocking LayerZero Channels
    • 🖊️Copy of Understanding the Vulnerability of Blocking LayerZero Channels
  • ♻️Tutorial 34: Forgetting to Update the Global State in Smart Contracts
  • ‼️Tutorial 35: Wrong Function Signature
  • 🛑Tutorial 36: Handling Edge Cases of Banned Addresses in DeFi
  • Tutorial 37: initializer and onlyInitializing
  • ➗Tutorial 38: Eigen Layer
    • 📩Denial of Service in NodeDelegator Due to EigenLayer's maxPerDeposit Check
    • 📈Incorrect Share Issuance Due to Strategy Updates in EigenLayer Integrations
    • 🔁nonReentrant Vulnerability in EigenLayer Withdrawals
  • ⚫Tutorial 39: Wormhole
    • 📩Proposal Execution Failure Due to Guardian Set Change
  • 💼Tutorial 40: Uniswap V3
    • 📩Understanding and Mitigating Partial Swaps in Uniswap V3
    • 🌊Underflow Vulnerability in Uniswap V3 Position Fee Growth Calculations
    • ➗Handling Decimal Discrepancies in Uniswap V3 Price Calculations
  • 🔢Tutorial 41: Multiple Token Addresses in Proxied Tokens
    • 🔓Understanding Vulnerabilities Arising from Tokens with Multiple Entry Points
  • 🤖Tutorial 42: abiDecoder v2
    • 🥥Vulnerabilities from Manipulated Token Interactions Using ABI Decoding
  • ❓Tutorial 43: On-Chain Randomness
    • Vulnerabilities in On-Chain Randomness and How It Can Be Exploited
  • 😖Tutorial 44: Weird ERC20 Tokens
    • Weird Token List
  • 🔨Tutorial 45: Hardcoded stable coin values
  • ❤️Tutorial 46: The Risks of Chainlink Heartbeat Discrepancies in Smart Contracts
  • 👣Tutorial 47: The Risk of Forgetting a Withdrawal Mechanism in Smart Contracts
  • 💻Tutorial 48: Governance and Voting
    • Flash Loan Voting Exploit
    • Exploiting Self-Delegation
    • 💰Missing payable Keyword in Governance Execute Function
    • 👊Voting Multiple Times by Shifting Delegation
    • 🏑Missing Duplicate Veto Check
  • 📕Tutorial 49: Not Conforming To EIP standards
    • 💎Understanding EIP-2981: NFT Royalty Standard
    • 👍Improper Implementation of EIP-2612 Permit Standard
    • 🔁Vulnerabilities of Missing EIP-155 Replay Attack Protection
    • ➡️Vulnerabilities Due to Missing EIP-1967 in Proxy Contracts
    • 🔓Vulnerability of Design Preventing EIP-165 Extensibility
    • 🎟️The Dangers of Not Properly Implementing ERC-4626 in Yield Vaults
    • 🔁EIP-712 Implementation and Replay Attacks
  • ⏳Tutorial 50: Vesting
    • 🚔Vulnerability of Allowing Unauthorized Withdrawals in Vesting Contracts
    • 👊Vulnerability of Unbounded Timelock Loops in Vesting Contracts
    • ⬆️Vulnerability of Incorrect Linear Vesting Calculations
    • ⛳Missing hasStarted Modifier
    • 🔓Vulnerability in Bond Depositor's Vesting Period Reset
  • ⛽Tutorial 51: Ethereum's 63/64 Gas Rule
    • 🛢️Abusing Ethereum's 63/64 Gas Rule to Manipulate Contract Behavior
  • 📩Tutorial 52: NPM Dependency Confusion and Unclaimed Packages
    • 💎Exploiting Unclaimed NPM Packages and Scopes
  • 🎈Tutorial 53: Airdrops
    • 🛄Claiming on Behalf of Other Users
    • 🧲Repeated Airdrop Claims Vulnerability
    • 🍃Airdrop Vulnerability – Merkle Leaves and Parent Node Hash Collisions
  • 🎯Tutorial 54: Precision
    • 🎁Vulnerabilities Due to Insufficient Precision in Reward Calculations
    • Min-Shares: Fixed Minimum Share Values for Tokens with Low Decimal Precision
    • Vulnerability Due to Incorrect Rounding When the Numerator is Not a Multiple of the Denominator
    • Vulnerability from Small Deposits Being Rounded Down to Zero Shares in Smart Contracts
    • Precision Loss During Withdrawals from Vaults Can Block Token Transfers Due to Value < Amount
    • 18 Decimal Assumption Scaling: Loss of Precision in Asset Conversion Due to Incorrect Scaling
  • Tutorial 55: AssetIn == AssetOut, FromToken == ToToken
    • 🖼️Vulnerability: Missing fromToken != toToken Check
  • 🚿Tutorial 56: Vulnerabilities Related to LP Tokens Being the Same as Reward Tokens
    • 🖼️Vulnerabilities Caused by LP Tokens Being the Same as Reward Tokens
  • Tutorial 57: Unsanitized SWAP Paths and Arbitrary Contract Call Vulnerabilities
    • 📲Arbitrary Contract Calls from Unsanitized Paths
  • Tutorial 58: The Risk of Infinite Approvals and Arbitrary Contract Calls
    • 🪣Exploiting Infinite Approvals and Arbitrary Contract Calls
  • Tutorial 59: Low-Level Calls in Solidity Returning True for Non-Existent Contracts
    • Low-Level Calls Returning True for Non-Existent Contracts
  • 0️⃣Tutorial 60: The Impact of PUSH0 and the Shanghai Hardfork on Cross-Chain Deployments > 0.8.20
    • PUSH0 and Cross-Chain Compatibility Challenges
  • 🐍Tutorial 61: Vyper Vulnerable Versions
    • Vyper and the EVM
  • ⌨️Tutorial 62: Typos in Smart Contracts — The Silent Threat Leading to Interface Mismatch
    • Vyper and the EVM
  • ☁️Tutorial 63: Balance Check Using ==
    • The Vulnerability: == Balance Check
  • 💍Tutorial 64: Equal Royalties for Unequal NFTs
    • Understanding the Problem: Equal Royalties for Unequal NFTs
  • 🖼️Tutorial 65: ERC721 and NFTs
    • The Risk of Using transferFrom Instead of safeTransferFrom in ERC721 Projects
    • ❄️Why _safeMint Should Be Used Instead of _mint in ERC721 Projects
    • The Importance of Validating Token Types in Smart Contracts
    • 📬Implementing ERC721TokenReceiver to Handle ERC721 Safe Transfers
    • NFT Implementation Deviating from ERC721 Standard in Transfer Functions
    • NFT Approval Persistence after Transfer
    • 🎮Gameable NFT Launches through Pseudo-Randomness
    • 2️⃣Protecting Buyers from Losing Funds Due to Claimed NFT Rewards on Secondary Markets
    • ♻️Preventing Reentrancy When Using SafeERC721
    • 🖊️Preventing Re-use of EIP-712 Signatures in NFT Private Sales
  • 2️⃣Tutorial 66: Vulnerability Arising from NFTs Supporting Both ERC721 and ERC1155 Standards
  • 📷Tutorial 67: ERC1155 Vulnerabilities
    • ♻️Preventing Reentrancy in OpenZeppelin's SafeERC1155
    • 🛫Vulnerabilities in OpenZeppelin's ERC1155Supply Contract
    • Understanding Incorrect Token Owner Enumeration in ERC1155Enumerable
    • Avoiding Breaking ERC1155 Composability with Improper safeTransferFrom Implementation
    • 💍Ensuring Compatibility with EIP-2981 in ERC1155 Contracts
  • 🪟Informational Vulnerabilities
  • ⛽Gas Efficiency
  • 💻Automation Tools
  • 🔜Out Of Gas (Coming Soon)
  • 🔜DEX Aggregators (Coming Soon)
  • 🔜Bribes (Coming Soon)
  • 🔜Understanding Compiled Bytecode (coming soon)
  • 🔜Deployment Mistakes (coming soon)
  • 🔜Optimistic Roll-ups (coming soon)
  • 🔜Typos (coming soon)
  • 🔜Try-Catch (coming soon)
  • 🔜NFT Market-place (coming soon)
  • 🔜Upgrade-able Contracts (coming soon)
Powered by GitBook
On this page
  • Use latestRoundData instead latestAnswer to run more validations
  • Chainlink's latestRoundData might return stale or incorrect results
  • SHOULD CHECK RETURN DATA FROM CHAINLINK AGGREGATORS
  • Lacking Validation Of Chainlink' Oracle Queries
  • Oracle data feed is insufficiently validated
  • No sanity check on pricePerShare might lead to lost value
  1. Tutorial 17 DEX's (Decentralized Exchanges)
  2. Common Vulnerabilities in DEX Code
  3. Vulnerabilities In Oracle Implementations

Not Validating Return Data e.g Chainlink: (lastestRoundData)

PreviousRelying Only On Chainlink: PriceOracle Does Not Filter Price Feed OutliersNextChainlink: Using latestAnswer instead of latestRoundData

Last updated 1 year ago

Vulnerability Details

Impact

The UniswapV3Oracle.sol retrieves the last WETH price through the latestAnswer method. While this method provides the last recorded value, it doesn't allow for checking the freshness or the validity of the data, which can be crucial for accurate and secure operations.

Enhanced Data Validation Approach

Utilizing the latestRoundData method instead offers the ability to conduct additional validations ensuring the data's accuracy and timeliness. Below is an example of how to implement these extra checks:

solidityCopy code(
    roundId,
    rawPrice,
    ,
    updateTime,
    answeredInRound
) = AggregatorV3Interface(XXXXX).latestRoundData();

require(rawPrice > 0, "Chainlink price <= 0");
require(updateTime != 0, "Incomplete round");
require(answeredInRound >= roundId, "Stale price");

These validation checks will help ensure that the price data used is not only non-zero but also derived from a complete round and is not stale, providing greater reliability and security in the price information used for operations.

Additional Resources

Vulnerability Details

Code Location

solidityCopy codefunction sync() public {
    (, int256 feedPrice, , uint256 timestamp, ) = feed.latestRoundData();
    Fixed18 price = Fixed18Lib.ratio(feedPrice, SafeCast.toInt256(_decimalOffset));

    if (priceAtVersion.length == 0 || timestamp > timestampAtVersion[currentVersion()] + minDelay) {
        priceAtVersion.push(price);
        timestampAtVersion.push(timestamp);

        emit Version(currentVersion(), timestamp, price);
    }
}

Issue

The sync function in ChainlinkOracle.sol employs latestRoundData without validating whether the returned data is stale, potentially leading to the usage of outdated prices. According to Chainlink’s documentation, it's imperative to check for stale data to ensure price accuracy and reliability.

Recommendation

Introduce checks to verify that the data obtained is not stale. For instance:

solidityCopy code(uint80 roundID, int256 feedPrice, , uint256 timestamp, uint80 answeredInRound) = feed.latestRoundData();
require(feedPrice > 0, "Chainlink price <= 0");
require(answeredInRound >= roundID, "Stale price");
require(timestamp != 0, "Round not complete");

Adding these checks will safeguard against the risks associated with stale data, enhancing the robustness and reliability of your price feeds.

The latestRoundData function within PriceFeed.sol contract retrieves asset prices from a Chainlink aggregator. Nonetheless, the function lacks adequate checks on roundID, creating a vulnerability to stale prices, which might jeopardize funds. According to Chainlink's documentation, when no answer is reached, the function doesn’t throw an error but instead returns 0. This behavior leads to the PriceOracle receiving incorrect price data. Dependence on an external Chainlink oracle, serving as the source of index price data, comes with risks typically associated with third-party data reliance. If the oracle is not properly maintained, outdated or incorrect data might be used in the system's index price calculations, potentially causing liquidity issues.

Proof of Concept

solidityCopy codeif (!_response.success) {return true;}
if (_response.roundId == 0) {return true;}
if (_response.timestamp == 0 || _response.timestamp > block.timestamp) {return true;}
if (_response.answer <= 0) {return true;}

Tools Used

  • Manual Review

Recommended Mitigation Steps

It's advisable to implement additional checks on the returned data and to provide clear revert messages for stale prices or incomplete rounds. For instance:

solidityCopy code(uint80 roundID, int256 price, , uint256 timeStamp, uint80 answeredInRound) = ETH_CHAINLINK.latestRoundData();
require(price > 0, "Chainlink price <= 0"); 
require(answeredInRound >= roundID, "Stale price detected");
require(timeStamp != 0, "Incomplete round detected");

By adding these checks, you can enhance the contract's resilience against stale or inaccurate price data, improving overall security and reliability.

Lacking Validation Of Chainlink' Oracle Queries

Vulnerability Details

Impact

The TwapOracle.consult() function is currently devoid of crucial validations that ensure completion and validity of a round, leading to potential risks. Notably, it recklessly casts an int256 price to uint256 without preliminary value checks, thereby exposing the system to the risk of underflow. This flaw may yield unexpected results, further propagating issues throughout the protocol wherever this function is invoked.

Moreover, the GasThrottle.validateGas() modifier relies on Chainlink's latestAnswer() function, which unfortunately doesn’t incorporate necessary checks against stale data. For enhanced data integrity, it is advisable to use latestRoundData() as it inherently supports additional validation checks.

Recommended Mitigation Steps

For safeguarding against the identified vulnerabilities, initiate validation of the latestRoundData() output with the code snippet provided below:

solidityCopy code(
    uint80 roundID,
    int256 price,
    ,
    uint256 updateTime,
    uint80 answeredInRound
) = ETH_CHAINLINK.latestRoundData();
require(answeredInRound >= roundID, "Chainlink Price Stale");
require(price > 0, "Chainlink Malfunction");
require(updateTime != 0, "Incomplete round");

Implement these validation checks within both TwapOracle.consult() and GasThrottle.validateGas(). For the latter, ensure replacement of the latestAnswer() function with latestRoundData() to eliminate the risk of utilizing stale data.

Oracle data feed is insufficiently validated

Vulnerability Details

Impact

Stale prices pose a significant risk as they can result in incorrect quoteAmount return values. Without proper validation checks for the oracle data feed, the contract might use outdated or incorrect price data, leading to potentially erroneous or malfunctional operations within the protocol.

Proof of Concept

The _peek function in question lacks adequate validation checks for the data retrieved from the oracle. In its current implementation, it does not verify the freshness of the price data or the completeness of the data round, which is crucial for ensuring accurate and reliable price information.

solidityCopy codefunction _peek(
    bytes6 base,
    bytes6 quote,
    uint256 baseAmount
) private view returns (uint256 quoteAmount, uint256 updateTime) {
    ...

    (, int256 daiPrice, , , ) = DAI.latestRoundData();
    (, int256 usdcPrice, , , ) = USDC.latestRoundData();
    (, int256 usdtPrice, , , ) = USDT.latestRoundData();

    require(
        daiPrice > 0 && usdcPrice > 0 && usdtPrice > 0,
        "Chainlink pricefeed reporting 0"
    );

    ...
}

Tools Used

  • Manual Review

Recommended Mitigation Steps

To remedy this vulnerability, it’s imperative to implement robust validation for the oracle data feed in the _peek function. Below is a revised version of the function with added validation checks for each price data retrieved:

solidityCopy codefunction _peek(
    bytes6 base,
    bytes6 quote,
    uint256 baseAmount
) private view returns (uint256 quoteAmount, uint256 updateTime) {
    ...
    (uint80 roundID, int256 daiPrice, , uint256 timestamp, uint80 answeredInRound) = DAI.latestRoundData();
    require(daiPrice > 0, "ChainLink: DAI price <= 0");
    require(answeredInRound >= roundID, "ChainLink: Stale DAI price");
    require(timestamp > 0, "ChainLink: DAI round not complete");

    (roundID, int256 usdcPrice, , timestamp, answeredInRound) = USDC.latestRoundData();
    require(usdcPrice > 0, "ChainLink: USDC price <= 0");
    require(answeredInRound >= roundID, "ChainLink: Stale USDC price");
    require(timestamp > 0, "ChainLink: USDC round not complete");

    (roundID, int256 usdtPrice, , timestamp, answeredInRound) = USDT.latestRoundData();
    require(usdtPrice > 0, "ChainLink: USDT price <= 0");
    require(answeredInRound >= roundID, "ChainLink: Stale USDT price");
    require(timestamp > 0, "ChainLink: USDT round not complete");
    ...
}

By incorporating these validation checks, you will ensure that the contract only uses valid, fresh, and complete price data, thereby mitigating the risk of using stale prices and improving the overall security and reliability of the contract's operations.

No sanity check on pricePerShare might lead to lost value

Overview:

The pricePerShare value is sourced either directly from an oracle or derived from ibBTC's core system. However, the current implementation lacks adequate safeguards and validation checks against potential bugs, exploits, or incorrect data originating from these sources.

Impact:

The pricePerShare is instrumental in determining the transfer amounts within the system. If there's an anomaly or discrepancy in its value— specifically, if pricePerShare is erroneously reported to be lower than its true market value— there's a tangible risk of substantial fund depletion from the associated Curve pool. In scenarios where the pricePerShare is undervalued, it may trigger an unintended and excessive outflow of wibbtc from the Curve pool, leading to significant financial losses and undermining the integrity and stability of the entire pool.

Recommended Mitigation Steps:

To preemptively address and mitigate this vulnerability:

  1. Implement Validation Checks: Introduce rigorous validation checks to confirm the accuracy and integrity of the pricePerShare data retrieved from both the oracle and ibBTC's core. This includes cross-verifying the received data against reliable external sources and implementing fail-safes and alerts for any discrepancies detected.

  2. Incorporate Safety Mechanisms: Design and embed safety mechanisms and contingency protocols to halt or limit transfers promptly if there's a suspected issue or anomaly with the pricePerShare value. This reactive measure can prevent fund drainage and provide an opportunity for manual intervention and assessment.

For more details on how to ascertain if a round’s answer is carried over from a previous round, please refer to the .

Refer to the contract at the following . The existing checks in the contract are as follows:

🤝
💀
🛑
✍️
Book an audit with Zokyo
Use latestRoundData instead latestAnswer to run more validations
Chainlink documentation
Chainlink's latestRoundData might return stale or incorrect results
ChainlinkOracle.sol#L50-L60
Historical Price Data
Chainlink FAQ on Stale Data
SHOULD CHECK RETURN DATA FROM CHAINLINK AGGREGATORS
GitHub link